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Recall that, for asymptotically stable systems, the step response describes 
the way the systems ”moves” from an equilibrium to another

Step Response
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The knowledge of the step response allows to easily determine 
the response to other inputs related to the step function by linear 
transformations 

The response to the ramp function 
is the integral of the step-response

time

Laplace

Step Response (contd.)
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Characteristic Parameters of the Step Response 
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• Steady-state value:


• Settling time:


• Rise time:


• Delay time:


• Peak time:


• Peak value:


• Maximum overshoot:


• Maximum percentage overshoot:


• “Period” of oscillations:


• Damping factor:
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Characteristic Parameters of the Step Response (contd.) 
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• Case A)

strictly proper first-order system

• Case B)

non strictly proper first-order system

asymptotic stability

asymptotic stability

Step Response: First Order Systems
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• Case A)

Step Response: First Order Systems (contd.)
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The calculation of the rising time      and the delay time       follows similar 
lines.


The following approximations are useful:

Settling-Time Calculation

For example, the settling time  for               can be characterised as follows:

Remark: without loss of generality, from now on we shall use      as a shorthand 
for
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Qualitative Analysis of the Step Response
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• Case B)

Note that (the system is not strictly proper): 

Step Response: First Order Systems (contd.)
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Qualitative Analysis of the Step Response
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• Case A)

real poles, no zeros

• Case B)

real poles, one zero

• Case C)

complex poles, no zeros

• Case D)

complex poles, one zero

Step Response: Second Order Systems
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• Case A)

asymptotic stability

Without loss of generality, assume

Step Response: Second Order Systems (contd.)

⌧1 > ⌧2
<latexit sha1_base64="n3BshaB6PYcKrYqbxIetAasU9no=">AAAB+HicbZDLSgMxFIYz9VbrpaMu3QSL4KrMVMGupODGZQV7gXYYMmmmDc1cSE6EOvRJ3LhQxK2P4s63MZ3OQlt/CHz85xzOyR+kgitwnG+rtLG5tb1T3q3s7R8cVu2j465KtKSsQxORyH5AFBM8Zh3gIFg/lYxEgWC9YHq7qPcemVQ8iR9gljIvIuOYh5wSMJZvV4dAtO/iG5xDw7drTt3JhdfBLaCGCrV9+2s4SqiOWAxUEKUGrpOClxEJnAo2rwy1YimhUzJmA4MxiZjysvzwOT43zgiHiTQvBpy7vycyEik1iwLTGRGYqNXawvyvNtAQNr2Mx6kGFtPlolALDAlepIBHXDIKYmaAUMnNrZhOiCQUTFYVE4K7+uV16Dbq7mW9cX9VazWLOMroFJ2hC+Sia9RCd6iNOogijZ7RK3qznqwX6936WLaWrGLmBP2R9fkDQ7KSJg==</latexit>
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where

Step Response: Second Order Systems (contd.)
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Hence:

Characteristics:

Step Response: Second Order Systems (contd.)



www.kios.ucy.ac.cy 16

Qualitative Analysis of the Step Response
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If                 : 

In general, in the absence of zeros, the most influential poles on the qualitative 
behaviour of the step response are the ones closer to the imaginary axis.

Approximate Calculation of the Settling Time
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• The main difference lies in the initial 
transient behaviour


• For a given settling time, the step-
response in the second-order case 
without zeros has a "slower" 
dynamics 

Qualitative Analysis: Comparison Between First and Second Order
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• Case B)

asymptotic stability

Without loss of generality, assume

Step Response: Second Order Systems (contd.)
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where

Step Response: Second Order Systems (contd.)
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Hence:

Characteristics:

Step Response: Second Order Systems (contd.)
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zero with little influence

overshoot

undershoot

Qualitative Analysis of the Step Response
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• Case C)

poles:

asymptotic stability

Step Response: Second Order Systems (contd.)
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Step Response: Second Order Systems (contd.)
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Hence:

Characteristics:

damped oscillations

Step Response: Second Order Systems (contd.)
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Qualitative Analysis of the Step Response
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Recall from Part 4:

Characteristic Parameters of the Step Response

Parameters:

natural angular frequency:

damping ratio
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and:

where:

Characteristic Parameters of the Step Response (contd.)
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• Settling time:


• Peak time:


• Peak value:


• Maximum percentage overshoot:


• “Period” of oscillations:


• Damping factor:
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only depend on       
but not on

Hence:

Characteristic Parameters of the Step Response (contd.)
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Maximum Percentage Overshoot
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• No damping: 

• Full damping: 

Undamped oscillations

No oscillations at all

poles:

poles:

Limit Cases
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Hence:

Example 1
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Example 2
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• Case D)

Characteristics of the step response:

Step Response: Second Order Systems (contd.)
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• The main difference lies in the initial 
transient behaviour


• For a given settling time, the step-
response in the second-order case 
without zeros has a "slower" 
dynamics 

Qualitative Analysis: Comparison between first and second order
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• Again, the main difference lies in 
the initial transient behaviour


• For a given settling time, the step-
response in Case C) without 
zeros      has a "slower" dynamics 

Qualitative Analysis: 

        Comparison between Case C) (no zeros) and Case D) (one zero)
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For simplicity, consider the case of real poles only:

Recall (in the absence of common factors in         ):

Asymptotic Stability

Step Response for Systems of Order > 2
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• Initial Value Theorem

• Final Value Theorem

Step Response for Systems of Order > 2 (contd.)
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Again, for simplicity, consider the case of real poles:

Assuming:

dominant component, hence:

Dominant Poles Approximation



www.kios.ucy.ac.cy 40

Dominant Poles Approximation: Real Poles
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Dominant Poles Approximation: Real and Complex Poles
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zero:
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poles: dominant poles

Example
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Example (contd.)
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Suppose that all poles are real and negative:

dominant component, hence:

Equivalent Pole Approximation
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poles:
equivalent pole

Example
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Example (contd.)
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• When using the dominant poles approximation:


– It is important to “preserve” the gain


– Zeros located close to the imaginary axis have to be properly 

taken into account


• The equivalent pole approximation can only be used when all poles 

are real and negative


• Both approximations are useful in qualitative analysis and the for initial 

controller’s design steps

Dominant and Equivalent Poles Approximation: Remarks


