

Industrial Control Part VII: Step-Response Analysis

Thomas Parisini

Department of Electrical and Electronic Engineering

Step Response

$$x(0) = 0; \quad u(t) = 1(t)$$

Recall that, for asymptotically stable systems, the step response describes the way the systems "moves" from an equilibrium to another

Step Response (contd.)

The knowledge of the step response allows to easily determine the response to other inputs related to the step function by linear transformations

Laplace
$$\frac{1}{s}$$

$$t \cdot 1(t) = \int_0^t 1(\tau)d\tau$$
 The response to the ramp function is the integral of the step-response

Characteristic Parameters of the Step Response

K. € ÎOÇ

Characteristic Parameters of the Step Response (contd.)

• Steady-state value: $\bar{y} = y(\infty)$

• Settling time: $t_{s,\varepsilon}$

• Rise time: t_r

• Delay time: t_d

• Peak time: t_p

• Peak value: y_p

• Maximum overshoot: $A = y_p - y(\infty)$

• Maximum percentage overshoot: $\Delta\% = 100 \cdot A/y(\infty)$

"Period" of oscillations: T

• Damping factor: B/A

Step Response: First Order Systems

Case A)

$$G(s) = \frac{\mu}{1+s\tau}\,; \quad \mu > 0; \, \tau > 0 \qquad \text{strictly proper first-order system}$$
 asymptotic stability

Case B)

$$G(s) = \frac{\mu(1+sT)}{1+s\tau}; \quad \mu > 0; \ \tau > 0 \quad \text{non strictly proper first-order system}$$

asymptotic stability

Step Response: First Order Systems (contd.)

$$y(t) = \mathcal{L}^{-1} \left[G(s) \frac{1}{s} \right]$$

$$= \mathcal{L}^{-1} \left[\frac{\mu}{s(1+s\tau)} \right] \qquad 0.99\mu'$$

$$= \mathcal{L}^{-1} \left[\frac{\mu}{s} - \frac{\mu \tau}{1 + s \tau} \right]$$

$$= \mu \left(1 - e^{-t/\tau} \right) , \quad t \ge 0$$

Settling-Time Calculation

$$1 - e^{-t/\tau} = 0.99 \implies e^{-t/\tau} = 0.01 \implies e^{t/\tau} = 100$$

$$t_{s,0.01} = \tau \ln 100 \simeq 4.6\tau$$

The calculation of the rising time $\,t_r$ and the delay time $\,t_d\,$ follows similar lines. $\,t_{s,0.01}\,$

The following approximations are useful:

$$t_r \simeq 2.2\tau$$
 $t_d \simeq 0.7\tau$ $t_{s,0.05} \simeq 3\tau$ $t_{s,0.01} \simeq 4.6\tau$

Remark: without loss of generality, from now on we shall use t_s as a shorthand for $t_{s,0.01}$

Qualitative Analysis of the Step Response

www.kios.ucy.ac.cy

9

Step Response: First Order Systems (contd.)

Case B)

$$y(t) = \mathcal{L}^{-1} \left[G(s) \frac{1}{s} \right]$$

$$= \mathcal{L}^{-1} \left[\frac{\mu(1+sT)}{s(1+s\tau)} \right]$$

$$= \mathcal{L}^{-1} \left[\frac{\mu}{s} + \frac{\mu(T-\tau)}{1+s\tau} \right]$$

$$= \mu \left(1 + (\alpha - 1)e^{-t/\tau} \right), \quad t \ge 0 \text{ with } T = \alpha \tau$$

Note that (the system is not strictly proper): $\lim_{t\to 0^+}y(t)=\mu\frac{T}{\tau}\neq 0$

Qualitative Analysis of the Step Response

K. € ÎOÇ

Step Response: Second Order Systems

Case A)

$$G(s) = \frac{\mu}{(1+s au_1)(1+s au_2)}$$
 real poles, no zeros

Case B)

$$G(s) = \frac{\mu(1+sT)}{(1+s\tau_1)(1+s\tau_2)}$$
 real poles, one zero

Case C)

$$G(s) = \frac{\varrho}{(s + \sigma + j\omega)(s + \sigma - j\omega)}$$

complex poles, no zeros

Case D)

$$G(s) = \frac{\varrho(1+sT)}{(s+\sigma+j\omega)(s+\sigma-j\omega)}$$

complex poles, one zero

• Case A)

$$G(s) = \frac{\mu}{(1+s\tau_1)(1+s\tau_2)}; \quad \mu > 0; \quad \tau_1 \neq \tau_2$$

$$\left. egin{array}{l} au_1 > 0 \ au_2 > 0 \end{array}
ight.
ight.
ight.
ight.
m asymptotic stability$$

Without loss of generality, assume $\tau_1 > \tau_2$

$$y(t) = \mathcal{L}^{-1} \left[G(s) \frac{1}{s} \right] = \mathcal{L}^{-1} \left[\frac{\mu}{s(1+s\tau_1)(1+s\tau_2)} \right]$$
$$= \mathcal{L}^{-1} \left[\frac{A}{s} + \frac{B}{1+s\tau_1} + \frac{C}{1+s\tau_2} \right]$$

where

$$A = \frac{\mu}{(1+s\tau_1)(1+s\tau_2)}\Big|_{s=0} = \mu$$

$$B = \frac{\mu}{s(1+s\tau_2)}\Big|_{s=-1/\tau_1} = \frac{\mu}{-\frac{1}{\tau_1}(1-\frac{\tau_2}{\tau_1})} = \frac{\mu\tau_1^2}{\tau_2-\tau_1}$$

$$C = \frac{\mu}{s(1+s\tau_1)}\Big|_{s=-1/\tau_2} = \frac{\mu}{-\frac{1}{\tau_2}(1-\frac{\tau_1}{\tau_2})} = \frac{\mu\tau_2^2}{\tau_1-\tau_2}$$

Hence:

$$y(t) = \mathcal{L}^{-1} \left[\frac{\mu}{s} - \frac{\frac{\mu \tau_1^2}{\tau_2 - \tau_1}}{1 + s\tau_1} + \frac{\frac{\mu \tau_2^2}{\tau_1 - \tau_2}}{1 + s\tau_2} \right]$$

$$= \mu \left(1 - \frac{\tau_1}{\tau_1 - \tau_2} e^{-t/\tau_1} + \frac{\tau_2}{\tau_1 - \tau_2} e^{-t/\tau_2} \right), \quad t \ge 0$$

Characteristics:

•
$$y(0) = 0$$

$$\bullet \quad \dot{y}(0) = 0$$

$$y(0) = 0$$

$$\dot{y}(0) = 0$$

$$\ddot{y}(0) = \frac{\mu}{\tau_1 \tau_2} > 0$$

Qualitative Analysis of the Step Response

Approximate Calculation of the Settling Time

If $\tau_1 \gg \tau_2$:

$$y(t) = \mu \left(1 - \frac{\tau_1}{\tau_1 - \tau_2} e^{-t/\tau_1} + \frac{\tau_2}{\tau_1 - \tau_2} e^{-t/\tau_2} \right), \quad t \ge 0$$

$$\simeq \mu \left(1 - e^{-t/\tau_1} \right), \quad t \ge 0$$

$$t_s \simeq 4.6\tau_1$$

In general, in the absence of zeros, the most influential poles on the qualitative behaviour of the step response are the ones closer to the imaginary axis.

Qualitative Analysis: Comparison Between First and Second Order

$$G'(s) = \frac{\mu}{1 + s\tau_1}$$

$$G''(s) = \frac{\mu}{(1 + s\tau_1)(1 + s\tau_2)}; \ \tau_1 \gg \tau_2$$

- The main difference lies in the initial transient behaviour
- For a given settling time, the stepresponse in the second-order case without zeros has a "slower" dynamics

• Case B)

$$G(s) = \frac{\mu(1+sT)}{(1+s\tau_1)(1+s\tau_2)}; \quad \mu > 0; \quad \tau_1 \neq \tau_2$$

Without loss of generality, assume $\tau_1 > \tau_2$

where

$$A = \frac{\mu(1+sT)}{(1+s\tau_1)(1+s\tau_2)} \Big|_{s=0} = \mu$$

$$B = \frac{\mu(1+sT)}{s(1+s\tau_2)} \Big|_{s=-1/\tau_1} = \frac{\mu(1-T/\tau_1)}{-\frac{1}{\tau_1}(1-\frac{\tau_2}{\tau_1})} = \frac{\mu\tau_1(\tau_1-T)}{\tau_2-\tau_1}$$

$$C = \frac{\mu(1+sT)}{s(1+s\tau_1)} \Big|_{s=-1/\tau_2} = \frac{\mu(1-T/\tau_2)}{-\frac{1}{\tau_2}(1-\frac{\tau_1}{\tau_2})} = \frac{\mu\tau_2(\tau_2-T)}{\tau_1-\tau_2}$$

20

Hence:

$$y(t) = \mu \left(1 - \frac{\tau_1 - T}{\tau_1 - \tau_2} e^{-t/\tau_1} + \frac{\tau_2 - T}{\tau_1 - \tau_2} e^{-t/\tau_2} \right), \quad t \ge 0$$

Characteristics:

$$\bullet \quad y(\infty) = \mu > 0$$

$$\bullet \quad y(0) = 0$$

•
$$y(0) = 0$$

• $\dot{y}(0) = \frac{\mu T}{\tau_1 \tau_2}$ $\begin{cases} > 0, & \text{if } T > 0 \\ < 0, & \text{if } T < 0 \end{cases}$

Qualitative Analysis of the Step Response

- zero with little influence
- overshoot
- undershoot

Case C)

$$G(s) = \frac{\varrho}{(s + \sigma + j\omega)(s + \sigma - j\omega)}$$

$$\mu = G(0) = \frac{\varrho}{\sigma^2 + \omega^2}$$

poles:
$$-\sigma \pm j\omega$$

$$\sigma > 0$$
 asymptotic stability

$$\omega > 0$$

$$\varrho > 0$$

$$Y(s) = \frac{G(s)}{s} = \frac{A}{s} + \frac{Bs + C}{s^2 + 2\sigma s + \sigma^2 + \omega^2}$$

$$As^2 + 2A\sigma s + A\sigma^2 + A\omega^2 + Bs^2 + Cs = \varrho$$

$$\begin{cases} A + B = 0 \\ 2A\sigma + C = 0 \\ A(\sigma^2 + \omega^2) = \varrho \end{cases} \longrightarrow \begin{cases} A = \frac{\varrho}{\sigma^2 + \omega^2} = \mu \\ B = -\mu \\ C = -2\sigma\mu \end{cases}$$

$$\begin{cases} A = \frac{\varrho}{\sigma^2 + \omega^2} = \mu \\ B = -\mu \\ C = 2\sigma\mu \end{cases}$$

$$Y(s) = \mu \left[\frac{1}{s} - \frac{s + 2\sigma}{s^2 + 2\sigma s + \sigma^2 + \omega^2} \right] = \mu \left[\frac{1}{s} - \frac{s + \sigma + \sigma}{(s + \sigma)^2 + \omega^2} \right]$$

$$= \mu \left[\frac{1}{s} - \frac{s+\sigma}{(s+\sigma)^2 + \omega^2} - \frac{\sigma}{\omega} \frac{\omega}{(s+\sigma)^2 + \omega^2} \right]$$

Hence:
$$y(t) = \mu \left[1 - e^{-\sigma t} \cos(\omega t) - \frac{\sigma}{\omega} e^{-\sigma t} \sin(\omega t) \right], \quad t \ge 0$$

$$= \mu \left[1 - e^{-\sigma t} \left(\cos(\omega t) + \frac{\sigma}{\omega} \sin(\omega t) \right) \right], \quad t \ge 0$$

$$= \mu \left[1 - \frac{\sqrt{\sigma^2 + \omega^2}}{\omega} e^{-\sigma t} \sin(\omega t + \varphi) \right], \quad t \ge 0$$

damped oscillations

where
$$\varphi = \arccos\left(\frac{\sigma}{\sqrt{\sigma^2 + \omega^2}}\right)$$

- Characteristics: \bullet $y(\infty) = \mu > 0$
 - $\bullet \quad y(0) = 0$
 - $\bullet \quad \dot{y}(0) = 0$

•
$$\ddot{y}(0) = \varrho > 0$$

Qualitative Analysis of the Step Response

Characteristic Parameters of the Step Response

Recall from Part 4:

$$G(s) = \frac{\varrho}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

$$\omega_n^2 = \sigma^2 + \omega^2$$

$$\omega_n \xi = \sigma$$

$$\omega_n \sqrt{1 - \xi^2} = \omega$$

Parameters:

 ω_n natural angular frequency:

 $\xi = \cos(\alpha)$ damping ratio

Characteristic Parameters of the Step Response (contd.)

and:

$$G(s) = \frac{\varrho}{(s+\sigma+j\omega)(s+\sigma-j\omega)} = \frac{\varrho}{(s+\sigma)^2 + \omega^2}$$
$$= \frac{\varrho}{s^2 + 2\sigma s + \sigma^2 + \omega^2} = \frac{\varrho}{s^2 + 2\xi\omega_n s + \omega_n^2}$$
$$2\xi\omega_n \qquad \omega_n^2$$

$$G(s) = \frac{\varrho/\omega_n^2}{1 + \frac{2\xi}{\omega_n}s + \frac{1}{\omega_n^2}s^2} = \frac{\mu}{1 + \frac{2\xi}{\omega_n}s + \frac{1}{\omega_n^2}s^2}$$

where:
$$\mu := \frac{\varrho}{\omega_n^2}$$

Characteristic Parameters of the Step Response (contd.)

Hence:

• Settling time:
$$t_s \simeq \frac{5}{\sigma} = \frac{4.6}{\xi \omega_n}$$

• Peak time:
$$t_p = \frac{\pi}{\omega} = \frac{\pi}{\omega_n \sqrt{1-\xi^2}}$$

• Peak value:
$$y_p = \mu \left[1 + e^{-\frac{\sigma\pi}{\omega}}\right] = \mu \left[1 + e^{-\frac{\xi\pi}{\sqrt{1-\xi^2}}}\right]$$

• Maximum percentage overshoot:
$$\Delta\% = 100 \cdot \frac{A}{\mu} = e^{-\sigma\pi/\omega} = 100 \cdot e^{-\frac{\xi\pi}{\sqrt{1-\xi^2}}}$$

• "Period" of oscillations:
$$T=\frac{2\pi}{\omega}=\frac{2\pi}{\omega_n\sqrt{1-\xi^2}}$$
• Damping factor:
$$\frac{B}{A}=\cdots=\Delta^2=e^{-2\sigma\pi/\omega}=e^{-\frac{2\xi\pi}{\sqrt{1-\xi^2}}}$$

• Damping factor:
$$\frac{B}{A}=\cdots=\Delta^2=e^{-2\sigma\pi/\omega}=e^{-\frac{2\xi\pi}{\sqrt{1-\xi^2}}}$$

only depend on ξ but **not** on ω_n

Maximum Percentage Overshoot

30

Limit Cases

• No damping: $\xi = 0$

$$G(s) = \frac{\varrho}{s^2 + \omega_n^2}$$
 poles: $\pm j\omega_n$

poles:
$$\pm j\omega_n$$

Undamped oscillations

Full damping: $\xi = 1$

$$G(s) = \frac{\varrho}{(s + \omega_n)^2}$$
 poles: $-\omega_n$; $-\omega_n$

poles:
$$-\omega_n; \, -\omega_n$$

No oscillations at all

Example 1

Hence:

$$\mu = G(0) = \frac{1}{k}$$

$$2\xi\omega_n = \frac{h}{M}$$

$$\omega_n^2 = \frac{k}{M}$$

$$G(s) = \frac{1}{Ms^2 + hs + k}$$
$$= \frac{1/M}{s^2 + \frac{h}{M}s + \frac{k}{M}}$$

$$\omega_n = \sqrt{\frac{k}{M}}$$

$$\xi = \frac{h}{2\sqrt{kM}}$$

K. € ĬOÇ

Example 2

$$\begin{array}{ccc}
 & \underline{x_2} & \underline{x_2} & \underline{x_2} & \underline{x_1} & \underline{x_2} &$$

$$\begin{cases}
C\dot{x}_1 = u - x_2 \\
L\dot{x}_2 = x_1 - Rx_2 \\
y = Rx_2
\end{cases}$$

$$A = \begin{bmatrix} 0 & -1/C \\ 1/L & -R/L \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -1/C \\ 1/L & -R/L \end{bmatrix} \qquad B = \begin{bmatrix} 1/C \\ 0 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & R \end{bmatrix}$$

$$G(s) = \begin{bmatrix} 0 & R \end{bmatrix} \begin{bmatrix} s & 1/C \\ -1/L & s+R/L \end{bmatrix}^{-1} \begin{bmatrix} 1/C \\ 0 \end{bmatrix} = \dots = \frac{R/(LC)}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$

$$\omega_n = \frac{1}{\sqrt{LC}}; \quad \xi = \frac{R}{2} \sqrt{\frac{C}{L}}; \quad \mu = R$$

Case D)

$$G(s) = \frac{\mu(1+sT)}{1 + \frac{2\xi}{\omega_n}s + \frac{1}{\omega_n^2}s^2}; \quad 0 < \xi < 1; \ \omega_n > 0; \ \mu > 0$$

Characteristics of the step response:

•
$$y(\infty) = \mu > 0$$

•
$$y(0) = 0$$

$$y(\infty) = \mu > 0$$

$$y(0) = 0$$

$$\dot{y}(0) = \mu T \omega_n^2$$

$$< 0, \quad \text{if } T < 0$$

Qualitative Analysis: Comparison between first and second order

- The main difference lies in the init transient behaviour
- For a given settling time, the step response in the second-order cas without zeros has a "slower" dynamics

00<u>0</u>00

Qualitative Analysis:

Comparison between Case C) (no zeros) and Case D) (one zero)

$$G'(s) = \frac{\mu}{1 + \frac{2\xi}{\omega_n} s + \frac{1}{\omega_n^2} s^2} \qquad y(t) \uparrow$$

$$G''(s) = \frac{\mu(1+sT)}{1 + \frac{2\xi}{\omega_n}s + \frac{1}{\omega_n^2}s^2}$$

- Again, the main difference lies in the initial transient behaviour
- For a given settling time, the stepresponse in Case C) without zeros has a "slower" dynamics

Step Response for Systems of Order > 2

For simplicity, consider the case of real poles only:

$$G(s) = \frac{\mu}{s^g} \frac{\prod_{i=1}^{m} (1 + sT_i)}{\prod_{i=1}^{n} (1 + s\tau_i)}$$

Recall (in the absence of common factors in G(s)):

Asymptotic Stability

$$Re(poles) < 0$$
$$g < 0$$

$$y(t) = \mathcal{L}^{-1} \left[G(s) \frac{1}{s} \right]$$

Step Response for Systems of Order > 2 (contd.)

Initial Value Theorem

Final Value Theorem

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} \operatorname{sf} \frac{1}{s} G(s) \begin{cases} = \mu, & \text{if } g = 0 \\ = 0, & \text{if } g < 0 \end{cases}$$

Dominant Poles Approximation

Again, for simplicity, consider the case of real poles:

$$Y(s) = G(s)\frac{1}{s} = \frac{\alpha_0}{s} + \frac{\alpha_1}{1 + s\tau_1} + \dots + \frac{\alpha_n}{1 + s\tau_n}$$

$$y(t) = \mathcal{L}^{-1} \left[G(s) \frac{1}{s} \right]$$

$$= \alpha_0 + \frac{\alpha_1}{\tau_1} e^{-t/\tau_1} + \dots + \frac{\alpha_n}{\tau_n} e^{-t/\tau_n}$$

Assuming: $\tau_1 > \tau_2 > \cdots > \tau_n$

$$y(t) = \alpha_0 + \frac{\alpha_1}{\tau_1} e^{-t/\tau_1} + \dots + \frac{\alpha_n}{\tau_n} e^{-t/\tau_n}$$

$$\simeq \alpha_0 + rac{lpha_1}{ au_1} e^{-t/ au_1}$$
 dominant component, hence: $t_s \simeq 5 au_1$

Dominant Poles Approximation: Real Poles

Dominant Poles Approximation: Real and Complex Poles

Example

$$G(s) = \frac{400(1+s)}{(1+0.2s)(1+0.1s)(s^2+2s+4)}$$

$$\psi_n = 2$$

$$\xi = 1/2$$

$$\mu = G(0) = 100$$

poles:
$$-5$$

 -10
 $-1 \pm j\sqrt{3}$

zero: -1

K@ĬOÇ

www.kios.ucy.ac.cy

42

Example (contd.)

www.kios.ucy.ac.cy

2

2.5

3.5

4.5

43

1.5

0.5

Equivalent Pole Approximation

Suppose that all poles are real and negative:

$$G(s) = \frac{\mu}{(1+s\tau_1)(1+s\tau_2)\cdots(1+s\tau_n)}; \quad \tau_i > 0, \ i = 1,\dots, n$$

$$G_e(s) = \frac{\mu}{1 + s\tau_e}, \qquad \tau_e := \sum_{i=1}^n \tau_i$$

dominant component, hence: $t_s \simeq 5\tau_e$

Example

$$G(s) = \frac{1}{(1+s)(1+0.1s)(1+0.5s)}$$

$$\mu = G(0) = 1$$
 poles: -1 -2 -10

Example (contd.)

Kolos

Dominant and Equivalent Poles Approximation: Remarks

- When using the dominant poles approximation:
 - It is important to "preserve" the gain
 - Zeros located close to the imaginary axis have to be properly taken into account
- The equivalent pole approximation can only be used when all poles are real and negative
- Both approximations are useful in qualitative analysis and the for initial controller's design steps